Charged Lepton Flavor Violation at the EIC

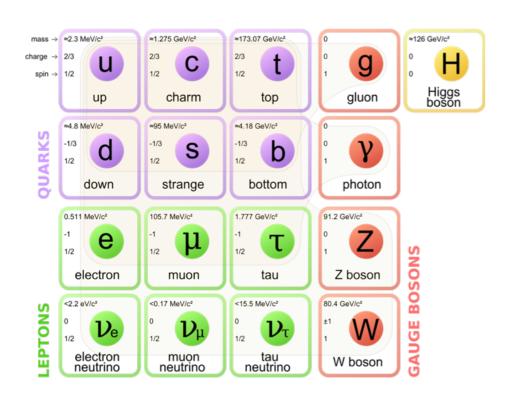
Sonny Mantry

University of North Georgia

Workshop on Electroweak and BSM Physics at the EIC

May 6th-7th, 2020

The Standard Model Flavor Structure



$$Q_{L}^{i} = \begin{pmatrix} u_{L} \\ d_{L} \end{pmatrix} \begin{pmatrix} c_{L} \\ s_{L} \end{pmatrix} \begin{pmatrix} t_{L} \\ b_{L} \end{pmatrix} \quad 3 \quad 2 \quad \frac{1}{6}$$

$$(u^{c})_{L}^{i} = (u^{c})_{L} \quad (c^{c})_{L} \quad (t^{c})_{L} \quad \bar{3} \quad 1 \quad -\frac{2}{3}$$

$$(d^{c})_{L}^{i} = (d^{c})_{L} \quad (s^{c})_{L} \quad (b^{c})_{L} \quad \bar{3} \quad 1 \quad \frac{1}{3}$$

$$L_{L}^{i} = \begin{pmatrix} \nu_{eL} \\ e_{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu L} \\ \mu_{L} \end{pmatrix} \begin{pmatrix} \nu_{\tau L} \\ \tau_{L} \end{pmatrix} \quad 1 \quad 2 \quad -\frac{1}{2}$$

$$(e^{c})_{L}^{i} = (e^{c})_{L} \quad (\mu^{c})_{L} \quad (\tau^{c})_{L} \quad 1 \quad 1 \quad 1$$

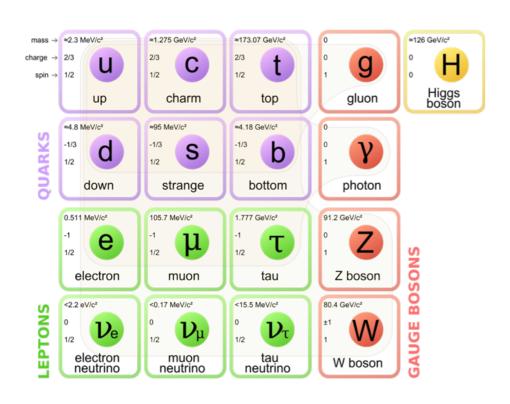
$$\phi = \begin{pmatrix} \phi^{+} \\ \phi^{0} \end{pmatrix} \quad 1 \quad 2 \quad \frac{1}{2}$$

$$SU(3)_Q \times SU(3)_U \times SU(3)_D$$

$$SU(3)_L \times SU(3)_E$$

 Accidental global flavor symmetries in the quark and lepton sectors are broken by the Yukawa matrices via the Higgs Mechanism

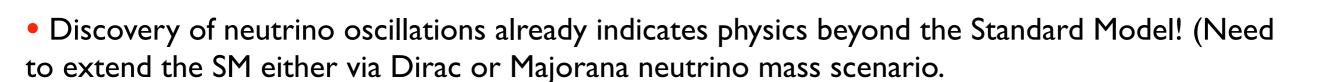
The Standard Model Flavor Structure

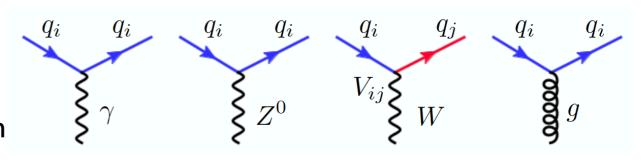


				SU(3)	$SU(2)_L$	$U(1)_Y$
$Q_L^i =$	$\left(\begin{array}{c} u_L \\ d_L \end{array} \right)$	$\left(egin{array}{c} c_L \\ s_L \end{array} ight)$	$\left(egin{array}{c} t_L \ b_L \end{array} ight)$	3	2	$\frac{1}{6}$
$(u^c)_L^i =$	$(u^c)_L$	$(c^c)_L$	$(t^c)_L$	3	1	$-\frac{2}{3}$
$(d^c)_L^i =$	$(d^c)_L$	$(s^c)_L$	$(b^c)_L$	$\bar{3}$	1	$\frac{1}{3}$
$L_L^i =$	$\left(egin{array}{c} u_{eL} \\ e_L \end{array} ight)$	$\left(egin{array}{c} u_{\mu L} \ \mu_L \end{array} ight)$	$\left(egin{array}{c} u_{ au L} \\ au_{L} \end{array} ight)$	1	2	$-\frac{1}{2}$
$(e^c)_L^i =$	$(e^c)_L$	$(\mu^c)_L$	$(\tau^c)_L$	1	1	1
		<i>q</i>	$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right)$	1	2	$\frac{1}{2}$

Flavor Structure

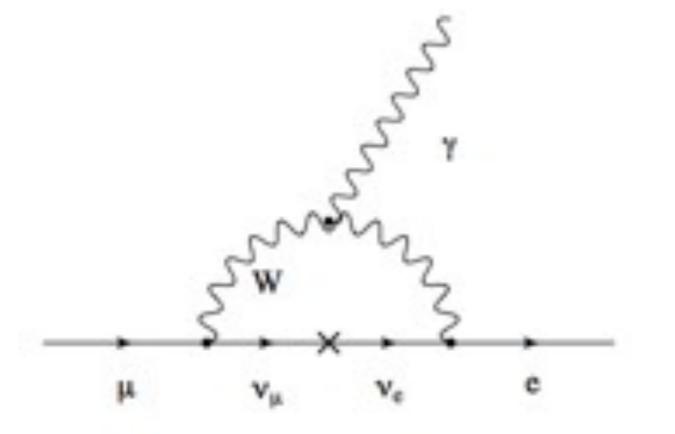
- No FCNCs at tree level (loop suppressed)
- Flavor and generation mixing via charged currents in the quark sector (CKM matrix)
- No generation mixing in the charged lepton sector.





Lepton Flavor Violation

- Discovery of neutrino oscillations indicate that neutrinos have mass!
- Neutrino oscillations imply Lepton Flavor Violation (LFV).
- LFV in the neutrinos also implies Charged Lepton Flavor Violation (CLFV):



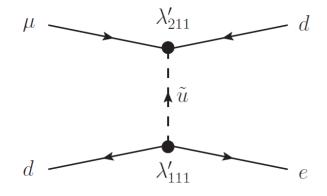
$$BR(\mu \to e\gamma) < 10^{-54}$$

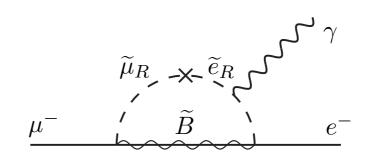
However, SM rate for CLFV is tiny due to small neutrino masses

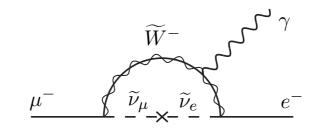
 No hope of detecting such small rates for CLFV at any present or future planned experiments!

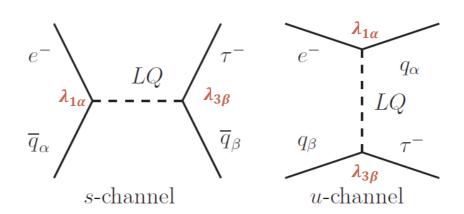
Lepton Flavor Violation in BSM

- However, many BSM scenarios predict enhanced CLFV rates:
 - SUSY (RPV)
 - SU(5), SO(10) GUTS
 - Left-Right symmetric models
 - Randall-Sundrum Models
 - LeptoQuarks
 - ...

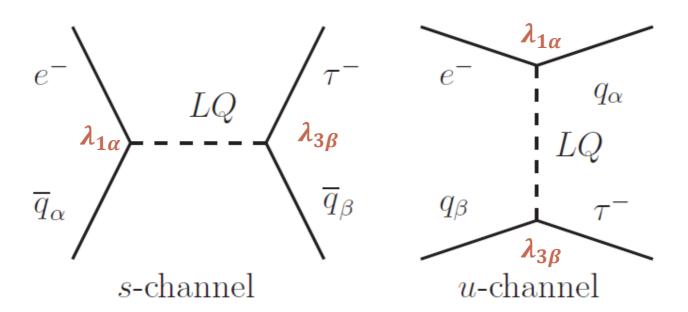








• Enhanced rates for CLFV in BSM scenarios make them experimentally accessible.



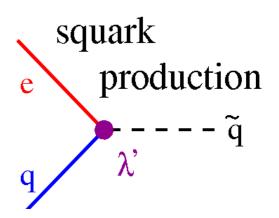
- Leptoquarks (LQs) are color triplet bosons that couple leptons to quarks
- LQs arise in many BSM models:
 - Pati-Salam Model
 - GUTs: SU(5), SO(10),...
 - Extended Technicolor
- LQs have a rich phenomenology and come in 14 types, classified according to:
 - Fermion number F=3B+L
 - Spin
 - Chirality of coupling to leptons [L or R]
 - Gauge group quantum numbers [SU(2)_L X U(1)_Y]
- [|F|=0,2]

[scalar (S) or vector (V)]

R-Parity Violating (RPV) SUSY

• R-parity:

$$R_p = (-1)^{3B+L+2S}$$



• With R-parity violation (RPV), the LSP is no longer stable, and many of the sparticle mass bounds from the LHC can be relaxed.

• SUSY RPV couplings (MSSM):

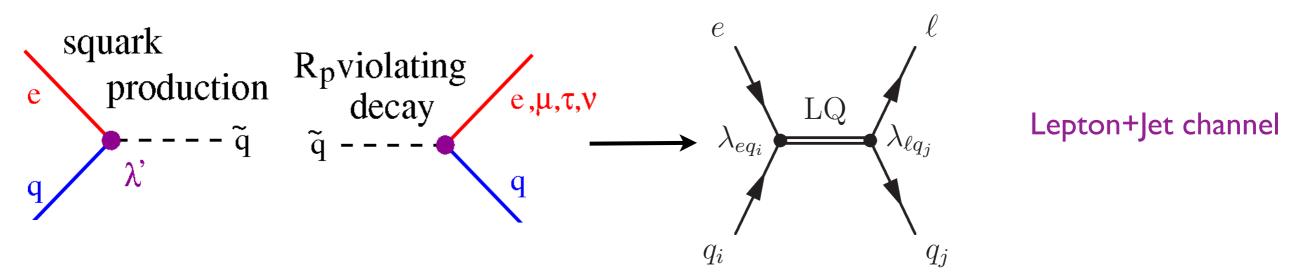
$$W_{\Delta L=1} = \frac{1}{2} \lambda^{ijk} L_i L_j \overline{e}_k + \lambda'^{ijk} L_i Q_j \overline{d}_k + \mu'^i L_i H_u$$

$$W_{\Delta B=1} = \frac{1}{2} \lambda''^{ijk} \overline{u}_i \overline{d}_j \overline{d}_k$$

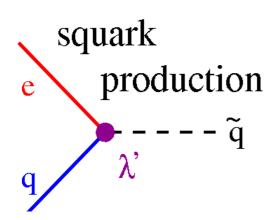
Single squark production at HERA, EIC

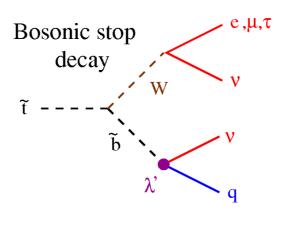
R-Parity Violating (RPV) SUSY

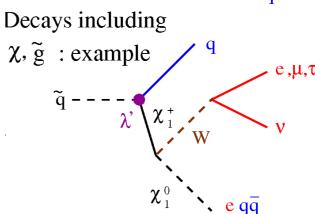
• For RPV production and RPV decay, signature is the same as for LQs:



- The bounds on LQs can be applied to squarks if they proceed via RPV decay.
- For other decays, the final state is more complicated:







Minimal Flavor Violation in Lepton Sector with Majorana Neutrino Mass

[Cirigliano, Grinstein, Isidori, Wise]

• Lepton sector with a Majorana mass generating effective operator:

$$\mathcal{L}_{\mathrm{Sym.Br.}} = -\lambda_e^{ij} \, \bar{e}_R^i (H^\dagger L_L^j) - \frac{1}{2\Lambda_{\mathrm{LN}}} \, g_\nu^{ij} (\bar{L}_L^{ci} \tau_2 H) (H^T \tau_2 L_L^j) + \mathrm{h.c.}$$

$$\qquad \qquad \qquad + v \lambda_e^{ij} \, \bar{e}_R^i e_L^j - \frac{v^2}{2\Lambda_{\mathrm{LN}}} \, g_\nu^{ij} \, \bar{\nu}_L^{ci} \nu_L^j + \mathrm{h.c.}$$

Lepton Yukawa matrix

Neutrino mass matrix

Global lepton flavor symmetries broken by Yukawa and Majorana neutrino mass matrices:

$$\lambda_e = \frac{m_\ell}{v} = \frac{1}{v} \operatorname{diag}(m_e, m_\mu, m_\tau) ,$$

$$g_\nu = \frac{\Lambda_{\text{LN}}}{v^2} \hat{U}^* m_\nu \hat{U}^\dagger = \frac{\Lambda_{\text{LN}}}{v^2} \hat{U}^* \operatorname{diag}(m_{\nu_1}, m_{\nu_2}, m_{\nu_3}) \hat{U}^\dagger$$

Minimal Flavor Violation

[Cirigliano, Grinstein, Isidori, Wise]

• Higher dimension operators that parameterize BSM physics built out of the Yukawa and neutrino mass matrices using spurion analysis. Naturally allows for BSM physics to satisfy FCNC constraints.

$$O_{LL}^{(1)} = \bar{L}_L \gamma^{\mu} \Delta L_L H^{\dagger} i D_{\mu} H$$

$$O_{LL}^{(2)} = \bar{L}_L \gamma^{\mu} \tau^a \Delta L_L H^{\dagger} \tau^a i D_{\mu} H$$

$$O_{LL}^{(3)} = \bar{L}_L \gamma^{\mu} \Delta L_L \bar{Q}_L \gamma_{\mu} Q_L$$

$$O_{LL}^{(4d)} = \bar{L}_L \gamma^{\mu} \Delta L_L \bar{d}_R \gamma_{\mu} d_R$$

$$O_{LL}^{(4u)} = \bar{L}_L \gamma^{\mu} \Delta L_L \bar{u}_R \gamma_{\mu} u_R$$

$$O_{LL}^{(5)} = \bar{L}_L \gamma^{\mu} \tau^a \Delta L_L \bar{Q}_L \gamma_{\mu} \tau^a Q_L$$

$$O_{RL}^{(1)} = g'H^{\dagger}\bar{e}_{R}\sigma^{\mu\nu}\lambda_{e}\Delta L_{L}B_{\mu\nu}$$

$$O_{RL}^{(2)} = gH^{\dagger}\bar{e}_{R}\sigma^{\mu\nu}\tau^{a}\lambda_{e}\Delta L_{L}W_{\mu\nu}^{a}$$

$$O_{RL}^{(3)} = (D_{\mu}H)^{\dagger}\bar{e}_{R}\lambda_{e}\Delta D_{\mu}L_{L}$$

$$O_{RL}^{(4)} = \bar{e}_{R}\lambda_{e}\Delta L_{L}\bar{Q}_{L}\lambda_{D}d_{R}$$

$$O_{RL}^{(5)} = \bar{e}_{R}\sigma^{\mu\nu}\lambda_{e}\Delta L_{L}\bar{Q}_{L}\sigma_{\mu\nu}\lambda_{D}d_{R}$$

$$O_{RL}^{(6)} = \bar{e}_{R}\lambda_{e}\Delta L_{L}\bar{u}_{R}\lambda_{U}^{\dagger}i\tau^{2}Q_{L}$$

$$O_{RL}^{(7)} = \bar{e}_{R}\sigma^{\mu\nu}\lambda_{e}\Delta L_{L}\bar{u}_{R}\sigma_{\mu\nu}\lambda_{U}^{\dagger}i\tau^{2}Q_{L}$$

$$O_{RL}^{(7)} = \bar{e}_{R}\sigma^{\mu\nu}\lambda_{e}\Delta L_{L}\bar{u}_{R}\sigma_{\mu\nu}\lambda_{U}^{\dagger}i\tau^{2}Q_{L}$$

$$\Delta_{\mu e} = \frac{\Lambda_{\rm LN}^2}{v^4} \frac{1}{\sqrt{2}} \left(s \, c \, \Delta m_{\rm sol}^2 \pm s_{13} \, e^{i\delta} \, \Delta m_{\rm atm}^2 \right) :$$

$$\Delta_{\tau e} = \frac{\Lambda_{\rm LN}^2}{v^4} \frac{1}{\sqrt{2}} \left(-s \, c \, \Delta m_{\rm sol}^2 \pm s_{13} \, e^{i\delta} \, \Delta m_{\rm atm}^2 \right)$$

$$\Delta_{\tau \mu} = \frac{\Lambda_{\rm LN}^2}{v^4} \frac{1}{2} \left(-c^2 \, \Delta m_{\rm sol}^2 \pm \Delta m_{\rm atm}^2 \right)$$

 Higher dimension operators suppressed by LFV scale, distinct from lepton number violation scale:

$$\mathcal{L} = \frac{1}{\Lambda_{LFV}^2} \sum_{i=1}^5 c_{LL}^{(i)} O_{LL}^{(i)} + \frac{1}{\Lambda_{LFV}^2} \left(\sum_{j=1}^2 c_{RL}^{(j)} O_{RL}^{(j)} + \text{h.c.} \right)$$

Minimal Flavor Violation

[Cirigliano, Grinstein, Isidori, Wise]

• In MFV scenario, a large disparity between lepton number violation and lepton flavor violation scales will produce enhanced CLFV rates.

$$B_{\mu \to e \gamma} = 8.3 \times 10^{-50} \left(\frac{\Lambda_{\rm LN}}{\Lambda_{\rm LFV}}\right)^4$$
 $B_{\mu \to e} = \left(\frac{\Lambda_{\rm LN}}{\Lambda_{\rm LFV}}\right)^4 \begin{cases} 6.6 \times 10^{-50} & \text{for Al} \\ 19.6 \times 10^{-50} & \text{for Au} \end{cases}$

Huge enhancement factor when:

$$\Lambda_{
m LN}\gg\Lambda_{
m LFV}$$

For example:

$$\Lambda_{\rm LN} \sim 10^9 \Lambda_{\rm LFV}$$

$$B_{\mu \to e\gamma} = \mathcal{O}(10^{-13})$$

$$B_{\mu \to e} = \mathcal{O}(10^{-13})$$

Charged Lepton Flavor Violation Limits

• Present and future limits:

LFV transitions	LFV Present Bounds ($90\%CL$)	Future Sensitivities
$BR(\mu \to e\gamma)$	$4.2 \times 10^{-13} \text{ (MEG 2016)}$	$4 \times 10^{-14} \; (MEG-II)$
$BR(\tau \to e\gamma)$	$3.3 \times 10^{-8} \text{ (BABAR 2010)}$	10^{-9} (BELLE-II)
$BR(\tau \to \mu \gamma)$	$4.4 \times 10^{-8} \text{ (BABAR 2010)}$	10^{-9} (BELLE-II)
$BR(\mu \to eee)$	$1.0 \times 10^{-12} \text{ (SINDRUM 1988)}$	$10^{-16} \text{ Mu3E (PSI)}$
$BR(\tau \to eee)$	$2.7 \times 10^{-8} \text{ (BELLE 2010)}$	$10^{-9,-10}$ (BELLE-II)
$BR(\tau \to \mu\mu\mu)$	$2.1 \times 10^{-8} \text{ (BELLE 2010)}$	$10^{-9,-10}$ (BELLE-II)
$BR(\tau \to \mu \eta)$	$2.3 \times 10^{-8} \text{ (BELLE 2010)}$	$10^{-9,-10}$ (BELLE-II)
$CR(\mu - e, Au)$	7.0×10^{-13} (SINDRUM II 2006)	
$CR(\mu - e, Ti)$	4.3×10^{-12} (SINDRUM II 2004)	$10^{-18} \text{ PRISM (J-PARC)}$
$CR(\mu - e, Al)$		3.1×10^{-15} COMET-I (J-PARC)

[taken from a talk by Y. Furletova]

- Note that CLFV(1,2) is severely constrained. Limits on CLFV(1,3) are weaker by several orders of magnitude.
- Limits on CLFV(1,2) are expected to improve even further in future experiments.

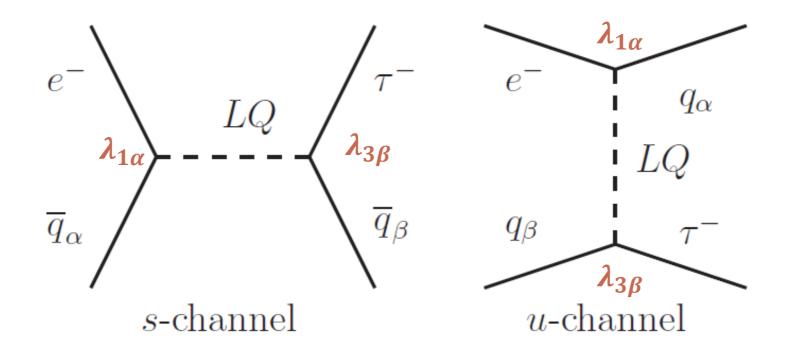
CLFV in DIS

[see also talk by Jinlong Zhang]

• The EIC can search for CLFV(1,3) in the DIS process (using electrons and positrons):

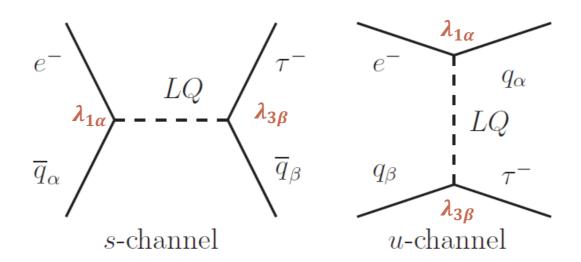
$$ep \to \tau X$$

• Such a process could be mediated, for example, by leptoquarks:



A phenomenological study of CLFV mediated by LQs at the EIC was first done in 2010.

[M.Gonderinger, M.Ramsey-Musolf]



- Leptoquarks (LQs) are color triplet bosons that couple leptons to quarks
- LQs arise in many BSM models:
 - Pati-Salam Model
 - GUTs: SU(5), SO(10),...
 - Extended Technicolor
- LQs have a rich phenomenology and come in 14 types, classified according to:
 - Fermion number F=3B+L [|F|=0, 2]
 - Spin
 - Chirality of coupling to leptons [L or R]
 - Gauge group quantum numbers [SU(2)_L X U(1)_Y]

[scalar (S) or vector (V)]

Renormalizable and gauge invariant couplings of LQs to quarks and leptons:

$$\mathcal{L}_{F=0} = h_{1/2}^L \overline{u}_R \ell_L S_{1/2}^L + h_{1/2}^R \overline{q}_L \epsilon e_R S_{1/2}^R + \tilde{h}_{1/2}^L \overline{d}_R \ell_L \tilde{S}_{1/2}^L + h_0^L \overline{q}_L \gamma_\mu \ell_L V_0^{L\mu}$$

$$+ h_0^R \overline{d}_R \gamma_\mu e_R V_0^{R\mu} + \tilde{h}_0^R \overline{u}_R \gamma_\mu e_R \tilde{V}_0^{R\mu} + h_1^L \overline{q}_L \gamma_\mu \vec{\tau} \ell_L \vec{V}_1^{L\mu} + \text{h.c.}$$

$$\mathcal{L}_{|F|=2} = g_0^L \overline{q}_L^c \epsilon \ell_L S_0^L + g_0^R \overline{u}_R^c e_R S_0^R + \tilde{g}_0^R \overline{d}_R^c e_R \tilde{S}_0^R + g_1^L \overline{q}_L^c \epsilon \vec{\tau} \ell_L \vec{S}_1^L + g_{1/2}^L \overline{d}_R^c \gamma_\mu \ell_L V_{1/2}^{L\mu} + g_{1/2}^R \overline{q}_L^c \gamma_\mu e_R V_{1/2}^{R\mu} + \tilde{g}_{1/2}^L \overline{u}_R^c \gamma_\mu \ell_L \tilde{V}_{1/2}^{L\mu} + \text{h.c.}$$

Classification of the 14 types of LQs: [Buchmuller, Ruckl, Wyler (BRW)]

Туре	J	F	Q	ep dominant process	Coupling	Branching ratio β_{ℓ}	Туре	Type $\left \begin{array}{c c} J & F & Q \end{array} \right $		Q	ep dominant process	Coupling	Branching ratio β_{ℓ}
S_0^L	0	2	-1/3	$e^I u_I \rightarrow \begin{cases} \ell^- u \end{cases}$	λ_L	1/2	V_0^L	1	0	+2/3	$e_{p}^{+}d_{I} \rightarrow \begin{cases} \ell^{+}d \end{cases}$	λ_L	1/2
\mathcal{D}_0	U	2	-1/3	$\left \begin{array}{cc} e_L^- u_L & ightarrow \left\{\begin{array}{cc} v_\ell d \end{array}\right.$	$-\lambda_L$	1/2	V ₀	1	U	12/0	$\left \begin{array}{cc} e_R^+ d_L & ightarrow \left\{ & ar{ u}_\ell u \end{array} \right $	λ_L	1/2
S_0^R	0	2	-1/3	$e_R^- u_R \rightarrow \ell^- u$	λ_R	1	V_0^R	1	0	+2/3	$e_L^+ d_R \rightarrow \ell^+ d$	λ_R	1
$ ilde{S}_0^R$	0	2	-4/3	$e_R^- d_R \rightarrow \ell^- d$	λ_R	1	$ ilde{V}_0^R$	1	0	+5/3	$e_L^+ u_R \rightarrow \ell^+ u$	λ_R	1
			-1/3	$\int_{0}^{\infty} \ell^{-}u$	$-\lambda_L$	1/2				+2/3	$\int_{0}^{+}d$	$-\lambda_L$	1/2
S_1^L	0	2	-1/3	$\left \begin{array}{cc} e_L^- u_L & ightarrow \left\{ \begin{array}{cc} v_\ell d \end{array} \right.$	$-\lambda_L$	1/2	V_1^L	1	0		$egin{array}{ccc} e_R^+ d_L & ightarrow \left\{egin{array}{c} z & u \ ar{ u}_\ell u \end{array} ight.$	λ_L	1/2
			-4/3	$e_L^- d_L \rightarrow \ell^- d$	$-\sqrt{2}\lambda_L$	1				+5/3	$e_R^+ u_L \rightarrow \ell^+ u$	$\sqrt{2}\lambda_L$	1
$V_{1/2}^L$	1	2	-4/3	$e_L^- d_R \rightarrow \ell^- d$	λ_L	1	$S_{1/2}^L$	0	0	+5/3	$e_R^+ u_R \rightarrow \ell^+ u$	λ_L	1
	1	2	-1/3	$e_R^- u_L \rightarrow \ell^- u$	λ_R	1	$S^R_{1/2}$	0	0	+2/3	$e_L^+ d_L o \qquad \ell^+ d$	$-\lambda_R$	1
$V_{1/2}^R$		-4/3	$e_R^- d_L \rightarrow \ell^- d$	λ_R	1	$S_{1/2}$			+5/3	$e_L^+ u_L \rightarrow \ell^+ u$	λ_R	1	
$ ilde{V}_{1/2}^L$	1	2	-1/3	$e_L^- u_R \rightarrow \ell^- u$	λ_L	1	$ ilde{S}_{1/2}^L$	0	0	+2/3	$e_R^+ d_R \rightarrow \ell^+ d$	λ_L	1

[Buchmuller, Ruckl, Wyler (BRW)]

Туре	J	F	Q	ep domina	ant process	Coupling	Branching ratio β_{ℓ}	Туре	J	F	Q	ep dominant process		Coupling	Branching ratio β_ℓ											
S_0^L	0	2	-1/3	$e_L^- u_L \rightarrow$	$\int \ell^- u$	λ_L	1/2	V_0^L	1	0	+2/3	$e_R^+ d_L$	→ {	$\ell^+ d$	λ_L	1/2										
	U	2	1/0	$C_L u_L$	$\left(\begin{array}{c} u_{\ell}d \end{array} \right)$	$-\lambda_L$	1/2	0	•		12/3	$R^{a}L$		$\bar{\nu}_\ell u$	λ_L	1/2										
S_0^R	0	2	-1/3	$e_R^- u_R \rightarrow$	$\ell^- u$	λ_R	1	V_0^R	1	0	+2/3	$e_L^+ d_R$	\rightarrow	$\ell^+ d$	λ_R	1										
$ ilde{S}_0^R$	0	2	-4/3	$e_R^- d_R \rightarrow$	$\ell^- d$	λ_R	1	$ ilde{V}_0^R$	1	0	+5/3	$e_L^+u_R$	\rightarrow	$\ell^+ u$	λ_R	1										
	1/0	1 /9	1 /9	1 /9	1 /9	1 /9	1 /9	1 /9	1 /9	1 /9	-1/3	1 /9	1 /2		$\int \ell^- u$	$-\lambda_L$	1/2				+2/3	o+ d	, ,	$\ell^+ d$	$-\lambda_L$	1/2
S_1^L	0	2	-1/3	$e_L^- u_L \rightarrow$	$\left\{ \begin{array}{c} \nu_\ell d \end{array} \right.$	$-\lambda_L$	1/2	V_1^L	1	0	+2/3	$e_R^+ d_L$	\rightarrow {	$ar{ u}_\ell u$	λ_L	1/2										
			-4/3	$e_L^- d_L \rightarrow$	$\ell^- d$	$-\sqrt{2}\lambda_L$	1				+5/3	$e_R^+ u_L$	\rightarrow	$\ell^+ u$	$\sqrt{2}\lambda_L$	1										
$V_{1/2}^L$	1	2	-4/3	$e_L^- d_R \rightarrow$	$\ell^- d$	λ_L	1	$S_{1/2}^L$	0	0	+5/3	$e_R^+u_R$	\rightarrow	$\ell^+ u$	λ_L	1										
	1	2	-1/3	$e_R^- u_L \rightarrow$	$\ell^- u$	λ_R	1	CR	0	0	+2/3	$e_L^+ d_L$	\rightarrow	$\ell^+ d$	$-\lambda_R$	1										
$V_{1/2}^R$	1	2	-4/3	$e_R^- d_L \rightarrow$	$\ell^- d$	λ_R	1	$S_{1/2}^R$	U	0	+5/3	$e_L^+u_L$	\rightarrow	$\ell^+ u$	λ_R	1										
$ ilde{V}_{1/2}^L$	1	2	-1/3	$e_L^- u_R \rightarrow$	$\ell^- u$	λ_L	1	$ ilde{S}_{1/2}^L$	0	0	+2/3	$e_R^+ d_R$	\rightarrow	$\ell^+ d$	λ_L	1										

• In order to maximally exploit the phenomenology of LQs and be able to distinguish between different types of LQ states, we need:

-electron and positron beams

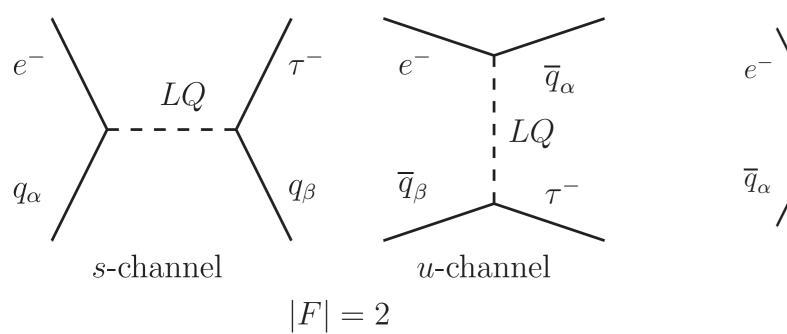
-proton and deuteron targets

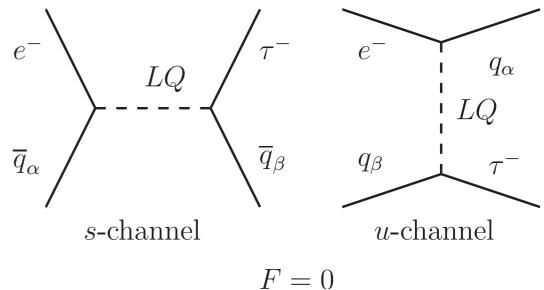
-polarized beams

-wide kinematic range

[separate |F|=0 vs |F|=2]
[separate "eu" vs "ed" LQs]
[separate L vs R]
[separate scalar vs vector LQs]

Leptoquarks: Electron vs Positron Beams





F= 3B+L

• With electron beams, LQs couple to:

|F| = 2:

- -quarks in s-channel
- -antiquarks in u-channel

F= 0:

- -antiquarks in s-channel
- -quarks in the u-channel

• With positron beams, LQs couple to:

|F|= 2:

- -antiquarks in s-channel
- -quarks in u-channel

F= 0:

- -quarks in s-channel
- -antiquarks in the u-channel

Cross Sections

• The tree level cross section using an electron beam for the F=0 and F=2 LQ channels:

$$\begin{split} \sigma_{F=0}^{e^-p} &= \sum_{\alpha,\beta} \frac{s}{32\pi} \left[\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2} \right]^2 \Big\{ \int dx \int dy \ x \bar{q}_\alpha(x,xs) f(y) + \int dx \int dy \ x q_\beta(x,-u) g(y) \Big\}, \\ \sigma_{|F|=2}^{e^-p} &= \sum_{\alpha,\beta} \frac{s}{32\pi} \left[\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2} \right]^2 \Big\{ \int dx \int dy \ x q_\alpha(x,xs) f(y) + \int dx \int dy \ x \bar{q}_\beta(x,-u) g(y) \Big\} \end{split}$$

• The tree level cross section using a positron beam for the F=0 and F=2 LQ channels:

$$\sigma_{F=0}^{e^+p} = \sum_{\alpha,\beta} \frac{s}{32\pi} \left[\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2} \right]^2 \left\{ \int dx \int dy \, x q_\alpha(x,xs) f(y) + \int dx \int dy \, x \bar{q}_\beta(x,-u) g(y) \right\}.$$

$$\sigma_{|F|=2}^{e^+p} = \sum_{\alpha,\beta} \frac{s}{32\pi} \left[\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2} \right]^2 \left\{ \int dx \int dy \, x \bar{q}_\alpha(x,xs) f(y) + \int dx \int dy \, x q_\beta(x,-u) g(y) \right\}.$$

- Electron and positron beams can be used to distinguish between different LQ channels.
- Kinematic information can be used to distinguish between scalar and vector LQ channels:

$$f\left(y\right) = \begin{cases} 1/2 & (\text{scalar}) \\ 2\left(1-y\right)^2 & (\text{vector}) \end{cases}, \quad g\left(y\right) = \begin{cases} \left(1-y\right)^2/2 & (\text{scalar}) \\ 2 & (\text{vector}) \end{cases} \longrightarrow \begin{cases} \text{y-dependence can} \\ \text{distinguish scalar and vector} \\ \text{leptoquarks} \end{cases}$$

Leptoquarks: Polarized Lepton and Nuclear (p,D)

Туре	J	F	Q	ep dominant process		Coupling	Branching ratio β_{ℓ}	Type J F Q		ep dominant process			Coupling	Branching ratio β_{ℓ}		
S_0^L	0	2	-1/3		$\ell^- u$	λ_L	1/2	VL	1	0	+2/3	,+d		$\ell^+ d$	λ_L	1/2
\mathcal{S}_0	U	2	-1/3	$e_L^- u_L \rightarrow \left\{ \right.$	$ u_\ell d$	$-\lambda_L$	1/2	V_0^L	1			$e_R^+ d_L$	\rightarrow {	$ar{ u}_\ell u$	λ_L	1/2
S_0^R	0	2	-1/3	$e_R^- u_R \rightarrow$	$\ell^- u$	λ_R	1	V_0^R	1	0	+2/3	$e_L^+ d_R$	\rightarrow	$\ell^+ d$	λ_R	1
$ ilde{S}_0^R$	0	2	-4/3	$e_R^- d_R \rightarrow$	$\ell^- d$	λ_R	1	$ ilde{V}_0^R$	1	0	+5/3	$e_L^+u_R$	\rightarrow	$\ell^+ u$	λ_R	1
			-1/3		$\ell^- u$	$-\lambda_L$	1/2				+2/3	o+ d	,	$\ell^+ d$	$-\lambda_L$	1/2
S_1^L	0	2	-1/3	$\left \begin{array}{cc} e_L^- u_L & ightarrow \left\{ \end{array} \right $	$\nu_\ell d$	$-\lambda_L$	1/2	V_1^L	1	0	+2/3	$e_R^+ d_L$	\rightarrow {	$ar{ u}_\ell u$	λ_L	1/2
			-4/3	$e_L^- d_L \rightarrow$	$\ell^- d$	$-\sqrt{2}\lambda_L$	1				+5/3	$e_R^+u_L$	\rightarrow	$\ell^+ u$	$\sqrt{2}\lambda_L$	1
$V_{1/2}^L$	1	2	-4/3	$e_L^- d_R \rightarrow$	$\ell^- d$	λ_L	1	$S_{1/2}^L$	0	0	+5/3	$e_R^+u_R$	\rightarrow	$\ell^+ u$	λ_L	1
	1	2	-1/3	$e_R^- u_L \rightarrow$	$\ell^- u$	λ_R	1	C R	0	0	+2/3	$e_L^+ d_L$	\rightarrow	$\ell^+ d$	$-\lambda_R$	1
$V_{1/2}^R$		2	-4/3	$e_R^- d_L \rightarrow$	$\ell^- d$	λ_R	1		$egin{array}{ c c c c c c c c c c c c c c c c c c c$	U	+5/3	$e_L^+ u_L$	\rightarrow	$\ell^+ u$	λ_R	1
$ ilde{V}_{1/2}^L$	1	2	-1/3	$e_L^- u_R \rightarrow$	$\ell^- u$	λ_L	1	$ ilde{S}_{1/2}^L$	0	0	+2/3	$e_R^+ d_R$	\rightarrow	$\ell^+ d$	λ_L	1

- Different nuclear targets (p vs D) can help untangle different leptoquark states ("eu" vs "ed" LQs).
- The chiral structure can be further unraveled through asymmetries involving both polarized lepton and nuclear beams.

We feel that it was important to get an answer to the following question: are both (lepton and proton) polarizations mandatory to completely disentangle the various LQ models present in the BRW lagrangians? According to our analysis the answer is yes.

-P.Taxil, E.Tugcu, J.M.Virey (Eur.Phys.J. C14 (2000) 165-168)

Leptoquarks: Polarized Lepton and Nuclear (p,D) Beams

• Various asymmetries involving both polarized leptons and p,D beams have been proposed to identify the nature of LQ states.

[P.Taxil, E.Tugcu, J.M.Virey]

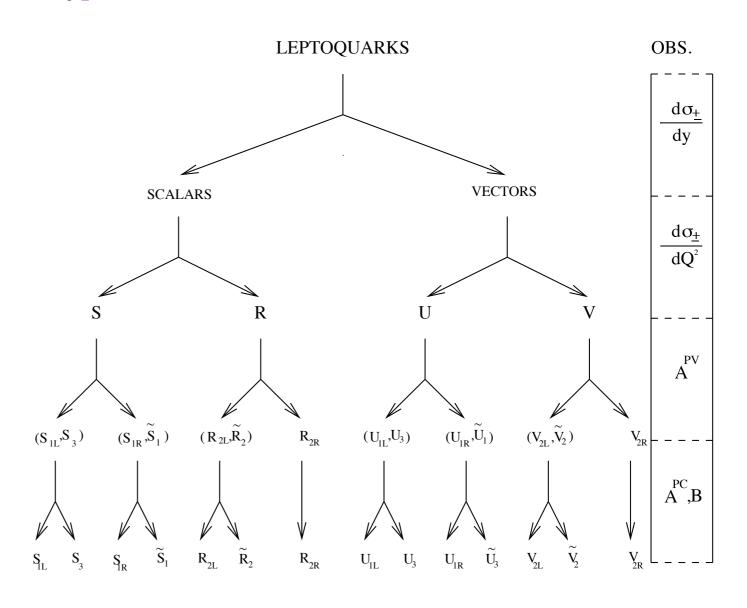
$$A_{LL}^{PV}(e^{t}) = \frac{\sigma_{t}^{--} - \sigma_{t}^{++}}{\sigma_{t}^{--} + \sigma_{t}^{++}}$$

$$A_{1}^{PC} = \frac{\sigma_{--}^{--} - \sigma_{--}^{-+}}{\sigma_{--}^{--} + \sigma_{--}^{-+}}$$

$$A_{2}^{PC} = \frac{\sigma_{--}^{++} - \sigma_{--}^{+-}}{\sigma_{-}^{++} + \sigma_{--}^{+-}}$$

$$A_{3}^{PC} = \frac{\sigma_{+}^{++} - \sigma_{--}^{+-}}{\sigma_{+}^{++} + \sigma_{+-}^{+-}}$$

$$B_{U} = \frac{\sigma_{--}^{--} - \sigma_{-}^{++} + \sigma_{+}^{++} - \sigma_{--}^{--} + \sigma_{--}^{+-} + \sigma_{+-}^{+-} + \sigma_{+-}^{+-}}{\sigma_{--}^{--} + \sigma_{-}^{++} + \sigma_{--}^{+-} + \sigma_{--}^{++} + \sigma_{--}^{+-} + \sigma_{$$



• This analysis should be revisited in the context of the EIC.

Summary of Key Criteria to Distinguish Leptoquark States

- Electron vs. positron beams: distinguish between F=0 and F=2 LQs
- Polarization of lepton beams: distinguish between left-handed (L) and right-handed (R) LQs
- Wide kinematic range: distinguish between scalar (S) and vector (V) LQs
- Proton vs Deuteron targets: distinguish between "eu" and "ed" LQs

CLFV limits from HERA

• The H1 and ZEUS experiments have searched for the CLFV process and set limits:

$$ep \to \tau X$$

$$\sqrt{s} \sim 320 \, \mathrm{GeV}$$

$$\mathcal{L} \sim 0.5 \, \mathrm{fb}^{-1}$$

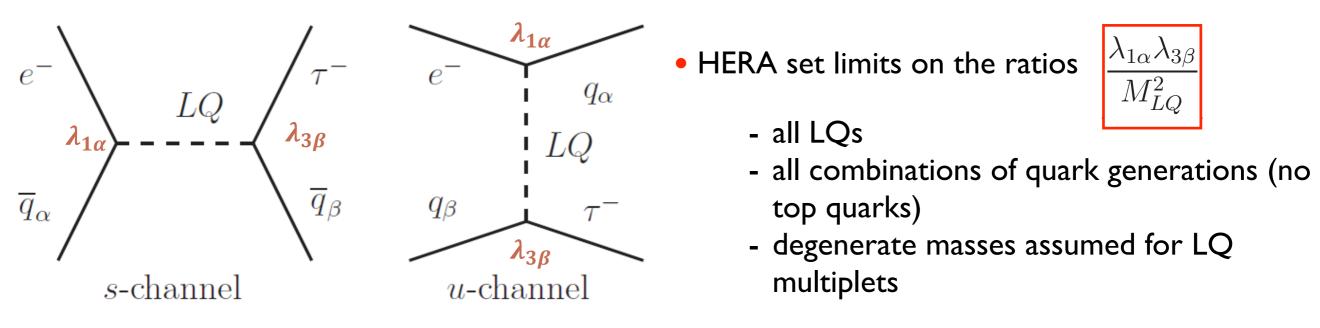
High luminosity EIC could surpass the best limits set by HERA:

CLFV mediated by Leptoquarks

ullet Cross-section for ep o au X takes the form:

$$\sigma_{F=0} = \sum_{\alpha,\beta} \frac{s}{32\pi} \left[\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2} \right]^2 \left\{ \int dxdy \ x\overline{q}_{\alpha} \left(x,xs \right) f \left(y \right) + \int dxdy \ xq_{\beta} \left(x,-u \right) g \left(y \right) \right\}$$

$$f \left(y \right) = \begin{cases} \frac{1/2 \quad (\text{scalar})}{2 \left(1-y \right)^2 \quad (\text{vector})} \\ \frac{1}{2} \quad (\text{vector}) \end{cases}, \quad g \left(y \right) = \begin{cases} \frac{(1-y)^2/2 \quad (\text{scalar})}{2 \quad (\text{vector})} \end{cases}$$



F=0

$$\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2}$$

- multiplets

[S. Chekanov et.al (ZEUS), A.Atkas et.al (H1)]

 Comparison of HERA limits with limits from other rare CLFV processes.

[S.Davidson, D.C. Bailey, B.A.Campbell]

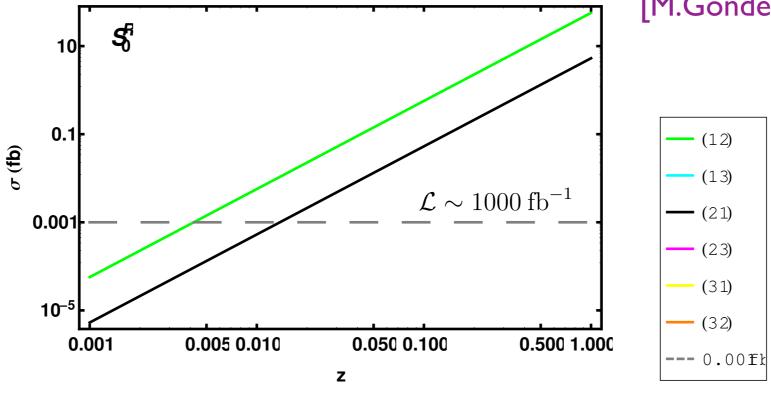
- HERA limits that are stronger are highlighted in yellow.
- HERA limits are generally better for couplings with second and third generations.

ep -	$ep \to \tau X$ H1 F												
J	Upper exclusion limits on $\lambda_{eq_i}\lambda_{\tau q_j}/m_{\rm LQ}^2~({\rm TeV}^{-2})$												
fo	for lepton flavour violating leptoquarks at 95% CL												
	S_0^L	S_0^R	$ ilde{S}_0^R$	S_1^L	$V_{1/2}^L$	$V_{1/2}^R$	$\left \tilde{V}_{1/2}^{L} \right $						
q_iq_j	$\begin{array}{c} \ell^- U \\ \ell^+ \bar{U} \end{array}$	$\begin{array}{c} \ell^- U \\ \ell^+ \bar{U} \end{array}$	$\ell^- D$ $\ell^+ \bar{D}$	$\ell^- U, \ell^- D$ $\ell^+ \bar{U}, \ell^+ \bar{D}$	$\ell^- D$ $\ell^+ \bar{D}$	$\ell^- U, \ell^- D$ $\ell^+ \bar{U}, \ell^+ \bar{D}$	$\ell^- U \\ \ell^+ \bar{U}$						
1 1	G _F 0.3 1.6	$ au o \pi e$ 0.06 1.8	$ au o \pi e \\ 0.06 \\ ag{2.6}$	$ au o \pi e$ 0.01 1.0	$ au o \pi e$ 0.03 1.1	$ au o \pi e$ 0.01	$ au o \pi e$ 0.03 0.8						
1 2	$K \rightarrow \pi \nu \bar{\nu}$ 5.8×10^{-4} 1.9	2.1	$ au ightarrow Ke$ 0.04 $ extbf{2.9}$	$K ightarrow \pi u ar{ u}$ 2.9 × 10 ⁻⁴ 1.1	$K ightarrow \pi u ar{ u}$ $2.9 imes 10^{-4}$ 1.9	$ au o Ke$ 0.02 $ ag{1.3}$	1.5						
1 3	*	*	$B ightarrow au ar{e}$ 0.07 3.0	$V_{ub} \ 0.3 \ {f 1.3}$	$B ightarrow auar{e}$ 0.03 2.2	$B ightarrow au ar{e}$ 0.03 2.4	*						
2 1	$ \begin{array}{c} K \to \pi \nu \bar{\nu} \\ 5.8 \times 10^{-4} \\ 2.7 \end{array} $	2.7	au o Ke 0.04 3.5	$K \rightarrow \pi \nu \bar{\nu}$ 2.9×10^{-4} 1.4	$K \rightarrow \pi \nu \bar{\nu}$ 2.9×10^{-4} 1.2	$ au ightarrow Ke$ 0.02 $oldsymbol{0.7}$	0.9						
2 2	au ightarrow 3e 0.6 6.3	au o 3e 0.6 6.8	au o 3e 1.8 5.4	au ightarrow 3e 1.5 2.3	au ightarrow 3e 0.9 2.7	au ightarrow 3e 0.5 2.2	$ au o 3e \\ 0.3 \\ 3.4$						
2 3	*	*	$B \rightarrow \bar{\tau}eX$ 14.0 5.8	$B ightarrow ar{ au} e X$ 7.2 2.7	$B \rightarrow \bar{\tau}eX$ 7.2 3.6	$B \rightarrow \bar{\tau}eX$ 7.2 4.0	*						
3 1	*	*	$B ightarrow auar{e}$ 0.07 4.0	$B ightarrow au ar{e}$ 0.03 2.0	$B ightarrow au ar{e}$ 0.03 1.2	$B ightarrow auar{e}$ 0.03 1.3	*						
3 2	*	*	$B \rightarrow \bar{\tau}eX$ 14.0 7.9	$B ightarrow ar{ au} e X$ 7.2 3.7	$B ightarrow ar{ au} e X$ 7.2 2.9	$B \rightarrow \bar{\tau}eX$ 7.2 3.1	*						
3 3	*	*	au ightarrow 3e 1.8 10.1	au ightarrow 3e 1.5 4.6	au ightarrow 3e 0.9 4.7	au ightarrow 3e 0.5 4.9	*						

EIC Sensitivity

[Deshpande, Faroughy, Gonderinger, Kumar, Taneja]

[M.Gonderinger, M.Ramsey-Musolf]

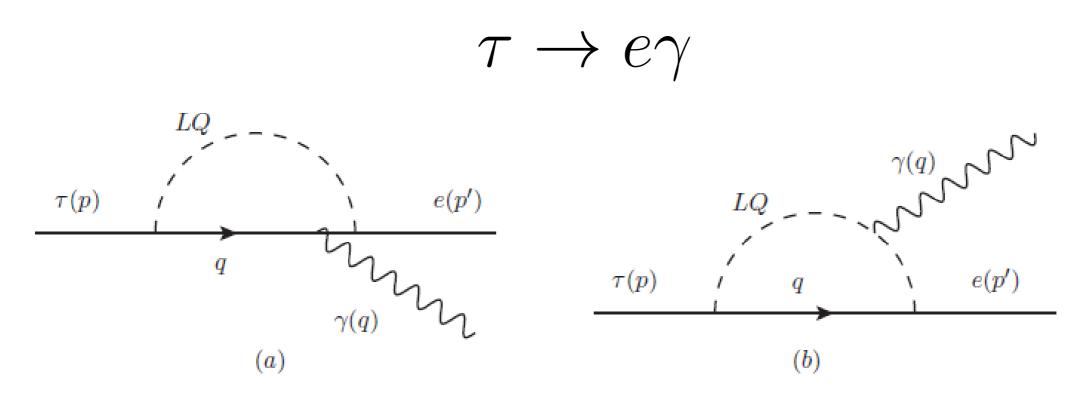


$$z = \frac{(\lambda_{1\alpha}\lambda_{3\beta})/(M_{LQ}^2)}{[(\lambda_{1\alpha}\lambda_{3\beta})/(M_{LQ}^2)]_{\text{HERAlimit}}}$$

- z=1 corresponds to evaluating the cross section at the HERA limit.
- EIC will be sensitive to cross sections with z<1, thereby improving upon HERA limits.
- With 1000 fb⁻¹ of integrated luminosity, the EIC could improve on HERA limits by a factor of between 10 and 200, depending on the specific LQ state.

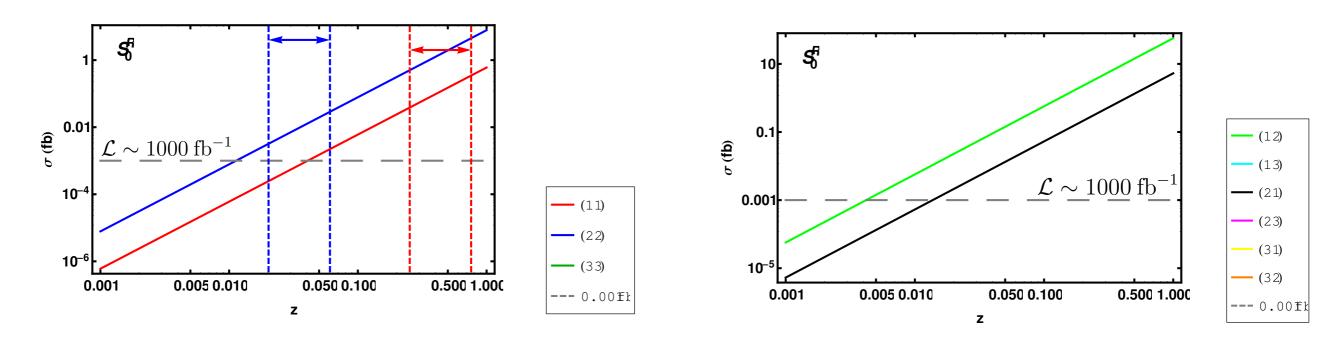
Leptoquark Mediated CLFV(1,3) Decays

• Leptoquarks can also mediate the rare decay:



These diagrams are also proportional to the combination:

$$\frac{\lambda_{1\alpha}\lambda_{3\beta}}{M_{LQ}^2}$$
 but only for $\alpha=\beta$ ("quark flavor-diagonal case")

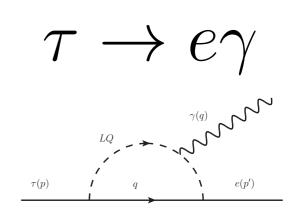


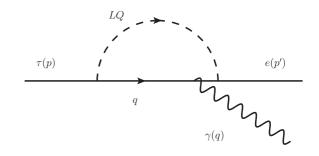
• Vertical dashed lines and horizontal arrows indicate the range of limits ("totalitarian" vs "democratic") from CLFV tau decay limits projected at Super-B.

Totalitarian: single quark flavor dominates loop

Democratic: all flavors contribute equally

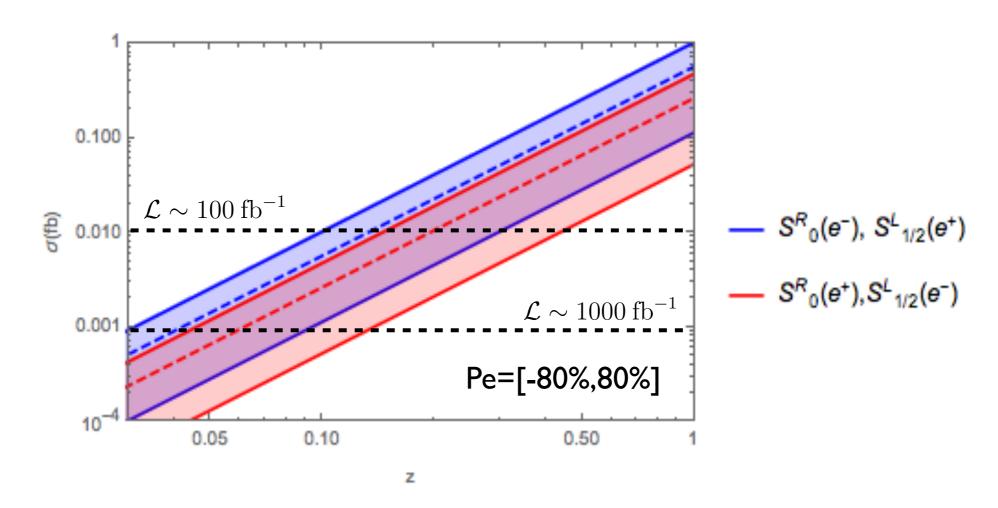
- More stringent limit comes from "democratic" scenario.
- Note that CLFV tau decay limits do not apply to the "quark off-diagonal" case.





Lepton Beam Polarization

[SM, Furletova: in proceedings for JPOS 17]



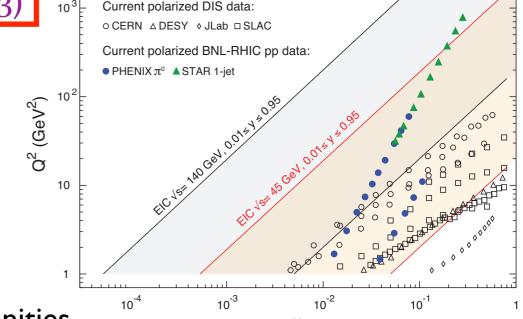
- EIC sensitivity to CLFV(1,3) to specific LQ channels can be improved using polarized lepton beams.
- In addition, polarized electron and positron beams can be used in conjunction to constrain specific LQ channels.

Conclusions

• The EIC can play an important role in searching/constraining various new physics scenarios that

include:

- Leptoquarks
- R-parity violating Supersymmetry
- Excited leptons (compositeness)
- Leptophobic Z's
- Charged Lepton Flavor Violation (CLFV)
- ..
- New physics can be constrained through:
- Precision measurements of the electroweak parameters
- Direct searches for charged lepton flavor violation CLFV(1,3)
- Such a program physics is facilitated by:
 - high luminosity
 - wide kinematic range
 - range of nuclear targets
 - polarized beams



- Addition of a positron beam can provide additional opportunities.
- See talk by Jinlong Zhang for simulation studies of CLFV at the EIC.